286 research outputs found

    Numerical simulations of neutron star-black hole binaries in the near-equal-mass regime

    Get PDF
    Simulations of neutron star-black hole (NSBH) binaries generally consider black holes with masses in the range (5−10)M⊙(5-10)M_\odot, where we expect to find most stellar mass black holes. The existence of lower mass black holes, however, cannot be theoretically ruled out. Low-mass black holes in binary systems with a neutron star companion could mimic neutron star-neutron (NSNS) binaries, as they power similar gravitational wave (GW) and electromagnetic (EM) signals. To understand the differences and similarities between NSNS mergers and low-mass NSBH mergers, numerical simulations are required. Here, we perform a set of simulations of low-mass NSBH mergers, including systems compatible with GW170817. Our simulations use a composition and temperature dependent equation of state (DD2) and approximate neutrino transport, but no magnetic fields. We find that low-mass NSBH mergers produce remnant disks significantly less massive than previously expected, and consistent with the post-merger outflow mass inferred from GW170817 for moderately asymmetric mass ratio. The dynamical ejecta produced by systems compatible with GW170817 is negligible except if the mass ratio and black hole spin are at the edge of the allowed parameter space. That dynamical ejecta is cold, neutron-rich, and surprisingly slow for ejecta produced during the tidal disruption of a neutron star : v∼(0.1−0.15)cv\sim (0.1-0.15)c. We also find that the final mass of the remnant black hole is consistent with existing analytical predictions, while the final spin of that black hole is noticeably larger than expected -- up to χBH=0.84\chi_{\rm BH}=0.84 for our equal mass case

    Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disk ejecta from neutron star mergers

    Get PDF
    We investigate the nucleosynthesis of heavy elements in the winds ejected by accretion disks formed in neutron star mergers. We compute the element formation in disk outflows from hypermassive neutron star (HMNS) remnants of variable lifetime, including the effect of angular momentum transport in the disk evolution. We employ long-term axisymmetric hydrodynamic disk simulations to model the ejecta, and compute r-process nucleosynthesis with tracer particles using a nuclear reaction network containing ∼8000\sim 8000 species. We find that the previously known strong correlation between HMNS lifetime, ejected mass, and average electron fraction in the outflow is directly related to the amount of neutrino irradiation on the disk, which dominates mass ejection at early times in the form of a neutrino-driven wind. Production of lanthanides and actinides saturates at short HMNS lifetimes (≲10\lesssim 10 ms), with additional ejecta contributing to a blue optical kilonova component for longer-lived HMNSs. We find good agreement between the abundances from the disk outflow alone and the solar r-process distribution only for short HMNS lifetimes (≲10\lesssim 10 ms). For longer lifetimes, the rare-earth and third r-process peaks are significantly under-produced compared to the solar pattern, requiring additional contributions from the dynamical ejecta. The nucleosynthesis signature from a spinning black hole (BH) can only overlap with that from a HMNS of moderate lifetime (≲60\lesssim 60 ms). Finally, we show that angular momentum transport not only contributes with a late-time outflow component, but that it also enhances the neutrino-driven component by moving material to shallower regions of the gravitational potential, in addition to providing additional heating.Comment: 18 pages, 11 figures, published version with small change

    Spin effects on neutron star fundamental-mode dynamical tides: phenomenology and comparison to numerical simulations

    Get PDF
    Gravitational waves from neutron star binary inspirals contain information on strongly-interacting matter in unexplored, extreme regimes. Extracting this requires robust theoretical models of the signatures of matter in the gravitational-wave signals due to spin and tidal effects. In fact, spins can have a significant impact on the tidal excitation of the quasi-normal modes of a neutron star, which is not included in current state-of-the-art waveform models. We develop a simple approximate description that accounts for the Coriolis effect of spin on the tidal excitation of the neutron star's quadrupolar and octupolar fundamental quasi-normal modes and incorporate it in the SEOBNRv4T waveform model. We show that the Coriolis effect introduces only one new interaction term in an effective action in the co-rotating frame of the star, and fix the coefficient by considering the spin-induced shift in the resonance frequencies that has been computed numerically for the mode frequencies of rotating neutron stars in the literature. We investigate the impact of relativistic corrections due to the gravitational redshift and frame-dragging effects, and identify important directions where more detailed theoretical developments are needed in the future. Comparisons of our new model to numerical relativity simulations of double neutron star and neutron star-black hole binaries show improved consistency in the agreement compared to current models used in data analysis

    Implementation of Monte-Carlo transport in the general relativistic SpEC code

    Get PDF
    Neutrino transport and neutrino-matter interactions are known to play an important role in the evolution of neutron star mergers, and of their post-merger remnants. Neutrinos cool remnants, drive post-merger winds, and deposit energy in the low-density polar regions where relativistic jets may eventually form. Neutrinos also modify the composition of the ejected material, impacting the outcome of nucleosynthesis in merger outflows and the properties of the optical/infrared transients that they power (kilonovae). So far, merger simulations have largely relied on approximate treatments of the neutrinos (leakage, moments) that simplify the equations of radiation transport in a way that makes simulations more affordable, but also introduces unquantifiable errors in the results. To improve on these methods, we recently published a first simulation of neutron star mergers using a low-cost Monte-Carlo algorithm for neutrino radiation transport. Our transport code limits costs in optically thick regions by placing a hard ceiling on the value of the absorption opacity of the fluid, yet all approximations made within the code are designed to vanish in the limit of infinite numerical resolution. We provide here an in-depth description of this algorithm, of its implementation in the SpEC merger code, and of the expected impact of our approximations in optically thick regions. We argue that the latter is a subdominant source of error at the accuracy reached by current simulations, and for the interactions currently included in our code. We also provide tests of the most important features of this code
    • …
    corecore